LIDAR - Messtechnik (LIDAR)


  • Aerosole
  • Wind
  • Spurengase (H2O, O3, CH4, CO2)


Complementary to Radar, Lidar (Light Detection and Ranging) instruments operate in the optical spectral range where light pulses from intense laser sources can interact even with the small particles and molecules of the atmosphere. This offers the possibility of collecting detailed information about the state of the atmosphere by active remote sensing under clear sky conditions not achievable by microwave observations.

Intense laser pulses are sent into the atmosphere. The
light that is scattered back from distant particles or
molecules is collected and analysed as function of time.
The distance between lidar system and sensing volume is
given by the speed of light.

Differential absorption lidar (DIAL) systems are used
for the measurement of atmospheric trace gases such as water vapor,
ozone, methane or carbon dioxide.

The fact that the Doppler effect slightly shifts the frequency of the Lidar
return signal can be used for remote detection and measurement of wind fields.

In the Lidar group of the DLR Institute for Atmospheric Physics, such Lidar
systems are developed and operated on aircraft during international meteorological
field campaigns.


The current Lidar instruments developed and operated at IPA are:

the OLEX system which comprises a four wavelength backscatter Lidar with polarisation capability for stratospheric ozone profiling, aerosol detection and the characterisation of the microphysics of particles;
the H2O-DIAL for water vapour profiling and particle measurements in troposphere and lower stratosphere;
the WIND system, a 10-µm scanning Doppler wind Lidar for the measurement of wind profiles in the troposphere;
a 10-µm Doppler wind Lidar for wake vortex studies;
a 2-µm Doppler wind Lidar for wake vortex studies and wind measurements in the troposphere

Literatur / Referenzen

  • Ehret, G., C. Kiemle, W. Renger, G. Simmet: 1993, “Airborne Remote Sensing of Tropospheric Water Vapor Using a Near Infrared DIAL System”, Appl. Opt., Vol.32 No.24, pp. 4534-4551.
  • Kiemle, C., M. Kästner, G. Ehret: 1995, “The Convective Boundary Layer Structure from Lidar and Radiosonde Measurements during the EFEDA´91 Campaign”, JTech. 12, 4, pp. 771-782.
  • Kiemle, C., G. Ehret, A. Giez, K. J. Davis, D. H. Lenschow, S. P. Oncley, 1997: „Estimation of boundary-layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL)“, BOREAS special issue, J. Geophys. Res., Vol. 102 No. D24, 29189-29203.
  • Ehret, G., Hoinka, K. P., Stein, J., Fix, A., Kiemle, C., and G. Poberaj, Low stratospheric water vapor measurements by an airborne DIAL, J. Geophys. Res., 104, 31351-31359, 1999.
  • Reitebuch, O., Werner, C., Leike, I., Delville, P., Flamant, P.H., et al.: Experimental Validation of Wind Profiling Performed by the Airborne 10-µm Heterodyne Doppler Lidar WIND. JTech, 18, (2001), S. 1331-1344.
  • Reitebuch, O., Volkert, H., Werner, C., Dabas, A., Delville, P., et al.: Determination of Airflow across the Alpine Ridge by a Combination of Airborne Doppler Lidar, Routine Radiosounding and Numerical Simulation. Q. J. Royal Met. Soc., 129, 588, (10.1256/qj.02.42),(2003), S. 715-727.

Institut / Einrichtung

DLR-Institut für Physik der Atmosphäre


Dr.rer.nat. Helmut Ziereis
DLR-Institut für Physik der Atmosphäre

Robert Klarner

Ähnliche Messgrößen

Nachfolgend finden Sie Referenzen zu Datenblättern in MessTec, welche mit hoher Wahrscheinlichkeit ähnliche Messgrößen beschreiben. Die Auswahl basiert auf einem semantischen Vergleich:

Aerosole :: mehr

Wind :: mehr

Spurengase (H2O, O3, CH4, CO2) :: mehr